A Lógica Moderna começou no século XVII com o filósofo e matemático alemão Gottfried Wilhelm Leibniz. Seus estudos influenciaram, 200 anos mais tarde, vários ramos da Lógica Matemática moderna e outras áreas relacionadas, como por exemplo a Cibernética (Norbert Wiener dizia que se fosse escolher na História da Ciência um patrono para a Cibernética, elegeria Leibniz" 78).
Entre outras coisas, Leibniz queria dotar a Metafísica (aquela parte da Filosofia que estuda o "ser" em si) de um instrumento suficientemente poderoso que a permitisse alcançar o mesmo grau de rigor que tinha alcançado a Matemática. Parecia-lhe que o problema das interrogações e polêmicas não resolvidas nas discussões filosóficas, assim como a insegurança dos resultados, eram fundamentalmente imputáveis à ambiguidade dos termos e dos processos conclusivos da linguagem ordinária. Leibnz viu surgir a idéia central de sua nova lógica precisamente como projeto de criação de uma lógica simbólica e de caráter completamente calculístico, análogos aos procedimentos matemáticos.
Historicamente falando, tal idéia já vinha sendo amadurecida, depois dos rápidos desenvolvimentos da Matemática nos séculos XVI e XVII, possibilitados pela introdução do simbolismo. Os algebristas italianos do século XVI já tinham encontrado a fórmula geral para a resolução das equações de terceiro e quarto graus, oferecendo à Matemática um método geral que tinha sido exaustivamente buscado pelos antigos e pelos árabes medievais. Descartes e Fermat criaram a geometria analítica, e, depois de iniciado por Galileu, o cálculo infinitesimal desenvolveu-se com grande rapidez, graças a Newton e ao próprio Leibniz. Ou seja, as matemáticas romperam uma tradição multisecular que as havia encerrado no âmbito da geometria, e se estava construindo um simbolismo cada vez mais manipulável e seguro, capaz de funcionar de uma maneira, por assim dizer, mecânica e automática, sujeito a operações que, no fundo, não eram mais do que regras para manipulação de símbolos, sem necessidade de fazer uma contínua referência a conteúdos geométricos intuitivos.
Leibniz deu-se conta de tudo isto e concebeu, também para a dedução lógica, uma desvinculação análoga com respeito ao conteúdo semântico das proposições, a qual além de aliviar o processo de inferência do esforço de manter presente o significado e as condições de verdade da argumentação, pusesse a dedução a salvo da fácil influência que sobre ela pode exercer o aspecto material das proposições. Deste modo coube a Leibniz a descoberta da verdadeira natureza do "cálculo" em geral, além de aproveitar pela primeira vez a oportunidade de reduzir as regras da dedução lógica a meras regras de cálculo, isto é, a regras cuja aplicação possa prescindir da consideração do conteúdo semântico das expressões.
Leibniz influenciou seus contemporâneos e sucessores através de seu ambicioso programa para a Lógica. Este programa visava criar uma linguagem universal baseada em um alfabeto do pensamento ou characteristica universalis, uma espécie de cálculo universal para o raciocínio.
Na visão de Leibniz a linguagem universal deveria ser como a Álgebra ou como uma versão dos ideogramas chineses: uma coleção de sinais básicos que padronizassem noções simples não analíticas. Noções mais complexas teriam seu significado através de construções apropriadas envolvendo sinais básicos, que iriam assim refletir a estrutura das noções complexas e, na análise final, a realidade. O uso de numerais para representar noções não analíticas poderia tornar possível que as verdades de qualquer ciência pudessem ser "calculadas" por operações aritméticas, desde que formuladas na referida linguagem universal 22, volume XI. Conforme o próprio Leibniz, "(...) quando aparecer uma controvérsia, já não haverá necessidade de uma disputa entre dois filósofos mais do que a que há entre dois calculistas. Bastará, com efeito, tomar a pena na mão, sentar-se à mesa (ad abacus) e (ao convite de um amigo, se se deseja), dizer um ao outro: Calculemos!" 6.
Essa idéia de Leibniz sustentava-se em dois conceitos intimamente relacionados: o de um simbolismo universal e o de um cálculo de raciocínio (isto é, um método quase mecânico de raciocínio)§9. Isto para a História da Computação tem um particular interesse, pois esse calculus ratiocinator de Leibniz contém o embrião da machina ratiocinatrix, a máquina de raciocinar buscada por Turing e depois pelos pesquisadores dentro do campo da Inteligência Artificial. Leibniz, assim como Boole, Turing, e outros - basta lembrar o ábaco, o 'computador' de Babbage, etc. -, perceberam a possibilidade da mecanização do cálculo aritmético. O próprio Leibniz, e Pascal um pouco antes, procuraram construir uma máquina de calcular. Nota-se portanto que o mesmo impulso intelectual que o levou ao desenvolvimento da Lógica Matemática o conduziu à busca da mecanização dos processos de raciocínio.
Interessa também chamar a atenção sobre a idéia de uma linguagem artificial que já aparece em Leibniz. Como já foi dito, ele captou muito bem as inúmeras ambigüidades a que estão submetidas as linguagens de comunicação ordinárias e as vantagens que apresentam os símbolos (que ele chamava notae) da Aritmética e Álgebra, ciências nas quais a dedução consiste no emprego de caracteres. Ao querer dar à Lógica uma linguagem livre de ambigüidades e ao procurar associar a cada idéia um sinal e obter a solução de todos os problemas mediante a combinação destes sinais, Leibniz acabou provocando um novo desenvolvimento da própria lógica.
A idéia de uma linguagem artificial ou a redução do raciocínio ao cálculo, como já visto em Lúlio e agora em Leibniz, não é, portanto, patrimônio do século XX. A contribuição de Leibniz ao desenvolvimento da lógica aparece sob dois aspectos: ele aplicou com sucesso métodos matemáticos para a interpretação dos silogismos aristotélicos, e apontou aquelas partes da Álgebra que estão abertas a uma interpretação não aritmética 22, volume XI. Pela primeira vez se expôs de uma maneira clara o princípio do procedimento formal. Leibniz tornou-se assim o grande precursor da Lógica Matemática.
Talvez se pudesse perguntar como é possível que muitos apresentem a Lógica Simbólica como fruto do nosso tempo, enquanto teve sua origem na segunda metade do século XVII. É que, na realidade, a aportação de Leibniz ficou substancialmente reduzida a um mero programa, do qual só executou alguns fragmentos, muito parciais se bem que muito interessantes também, capazes de nos dar uma idéia de como concebia sua obra. Nem sequer seus seguidores diretos levaram para a frente a construção do cálculo lógico mais além de um nível muito rudimentar. Provavelmente a excessiva magnitude do plano de sua characteritica universalis o tenha seduzido, afastando Leibniz de objetivos mais modestos porém alcançáveis, como o de construir o primeiro cálculo lógico autêntico.
Ainda dentro desses primeiros passos mais concretos em direção à construção de um dispositivo para cálculo automático, não se pode deixar de falar do ilustre francês Blaise Pascal (1623-1662), já acima citado, matemático, cientista e filósofo, que, antecedendo a Leibniz, montou uma máquina de cálculo digital para ajudá-lo nos negócios do pai.
http://www.rude2d.kit.net/leibniz.html
Postado por: Katariny Steffani
Nenhum comentário:
Postar um comentário